例3 数一数,下图中有多少个点?

解:方法1:从上至下一层一层地数,见下图.

总点数=1+2+3+4+5+6+7+8+9=45.
方法2:补上一个同样的三角形点群(但要上下颠倒放置)和原有的那个三角形点群共同拼成一个长方形点群,则显然有下式成立(见下图):
三角形点数=长方形点数÷2
因三角形点数=1+2+3+4+5+6+7+8+9
而长方形点数=10×9=(1+9)×9
代入上面的文字公式可得:
1+2+3+4+5+6+7+8+9
=(1+9)×9÷2=45.
进一步把两种方法联系起来看:
方法1是老老实实地直接数数.
方法2可以叫做“拼补法”.经拼补后,三角形点群变成了长方形点群,而长方形点群的点数就可以用乘法算式计算出来了.
即1+2+3+4+5+6+7+8+9
=(1+9)×9÷2.
这样从算法方面讲,拼补法的作用是把一个较复杂的连加算式变成了一个较简单的乘除算式了.这种方法在700多年前的中国的古算书上就出现了.
再进一步,若脱离开图形(点群)的背景,纯粹从数的方面找规律,不难发现下述事实:

这个等式的左边就是从1开始的连续自然数相加之和,第一个数1又叫首项,最后一个数9叫末项,共有9个数又可以说成共有9项,这样,等式的含义就可以用下面的语言来表述:
从1开始的连续自然数前几项的和等于首项加末项之和乘以项数的积的一半.或是写成下面的文字式:
和=(首项+末项)×项数÷2
这个文字式通常又叫做等差数列求和公式.