小升初奥数题资料(三)(5)
来源:家长帮论坛淄博站 文章作者:杰为卓荦 2018-03-10 16:35:49
2. 甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇。求丙车的速度。
分析:
解答的关键是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度。再根据速度和、相遇时间和路程三者之间的关系,求出丙车速度。
解:(1)卡车的速度:( 60×6-48×7)÷(7-6)=24÷1=24(千米)
(2)AB两地之间的距离:(60+24)×6=504(千米)
(3)丙车与卡车的速度和:504÷8=64(千米)
(4)丙车的速度:64-24=40(千米/小时)
答:丙车的速度每小时40千米。
3. 两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?
② 火车过桥
过桥问题也是行程问题的一种。首先要弄清列车通过一座桥是指从车头上桥到车尾离桥。列车过桥的
总路程是桥长加车长,这是解决过桥问题的关键。过桥问题也要用到一般行程问题的基本数量关系:
过桥问题的一般数量关系是:
因为: 过桥的路程 = 桥长 + 车长
所以有:通过桥的时间 =(桥长 + 车长)÷车速
车速 = (桥长 + 车长)÷过桥时间
公式的变形:
桥长 = 车速×过桥时间 - 车长
车长 = 车速×过桥时间 - 桥长
后三个都是根据第二个关系式逆推出的。
火车通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决。
一、例题与方法指导
例1. 一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?
思路导航:
从火车头上桥,到火车尾离桥,这之间是火车通过这座大桥的过程,也就是过桥的路程是桥长 + 车长。通过"过桥的路程"和"车速"就可以求出火车过桥的时间。
(1)过桥路程:6700 + 100 = 6800(米)
(2)过桥时间:6800÷400 = 17(分)
答:这列客车通过南京长江大桥需要17分钟。
例2. 一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?
思路导航:
要想求火车过桥的速度,就要知道"过桥的路程"和过桥的时间。
(1)过桥的路程:160 + 440 = 600(米)
(2)火车的速度:600÷30 = 20(米)
答:这列火车每秒行20米。
例3. 某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?
思路导航:
火车通过第一个隧道比通过第二个隧道多用了8秒,为什么多用8秒呢?原因是第一个隧道比第二个隧道长360-216 = 144(米),这144米正好和8秒相对应,这样可以求出车速。火车24秒行进的路程包括隧道长和火车长,减去已知的隧道长,就是火车长。
(1)第一个隧道比第二个长多少米?
360-216 = 144(米)
(2)火车通过第一个隧道比第二个多用几秒?
24-16 = 8(秒)
(3)火车每秒行多少米?
144÷8 = 18(米)
(4)火车24秒行多少米?
18×24 = 432(米)
(5)火车长多少米?
432-360 = 72(米)
答:这列火车长72米。
二、巩固训练
1. 某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?
思路导航:
通过前两个已知条件,我们可以求出火车的车速和火车的车身长。
(342-234)÷(23-17)= 18(米)……车速
18×23-342 = 72(米) ……………………车身长
两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据"路程÷速度和 = 相遇时间",可以求出两车错车需要的时间。
(72 + 88)÷(18 + 22)= 4(秒)
答:两车错车而过,需要4秒钟。
2. 一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?
(265 + 985)÷25 = 50(秒)
答:需要50秒钟。
3. 一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?
(200 + 50)÷25 = 10(米)
答:这列火车每秒行10米。
三、拓展提升
1. 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多
少米?
1分 = 60秒
30×60-240 = 1560(米)
答:这座桥长1560米。
2. 一列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一座桥,共用40秒钟,桥长150米,
问这条隧道长多少米?
15×40-240-150 = 210(米)
答:这条隧道长210米。
3. 一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?
1200÷(75-15)= 20(米)
20×15 = 300(米)
答:火车长300米。
4. 在上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?
(18 + 17)×10-182 = 168(米)
答:另一列火车长168米。
(五) 列方程解应用题
同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。用算术方法解答比较困难,如果用方程解就简便得多。它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:
相关文章
- 小学1-6年级作文素材大全
- 全国小学升初中语数英三科试题汇总
- 小学1-6年级万博体育app
- 小学1-6年级奥数类型例题讲解整理汇总
- 小学1-6年级奥数练习题整理汇总
- 小学1-6年级奥数知识点汇总
- 小学1-6年级语数英教案汇总
- 小学语数英试题资料大全
- 小学1-6年级语数英期末试题整理汇总
- 小学1-6年级语数英期中试题整理汇总
- 小学1-6年语数英单元试题整理汇总




