小升初奥数题资料(三)(8)
来源:家长帮论坛淄博站 文章作者:杰为卓荦 2018-03-10 16:35:49
解:连结AG,自A作AH垂直于DG于H,在△ADG中,AD=4,DC=4(AD上的高).
∴S△AGD=4×4÷2=8,又DG=5,
∴S△AGD=AH×DG÷2,
∴AH=8×2÷5=3.2(厘米),
∴DE=3.2(厘米)。
4. 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
解:∵梯形面积=(上底+下底)×高÷2
即45=(AD+BC)×6÷2,
45=(AD+10)×6÷2,
∴AD=45×2÷6-10=5米。
∴△ADE的高是2米。
△ EBC的高等于梯形的高减去△ADE的高,即6-2=4米,
5. 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
证明:连结CE,
ABCD的面积等于△CDE面积的2倍,
而 DEFG的面积也是△CDE面积的2倍。
∴ ABCD的面积与 DEFG的面积相等。
(八) 不规则图形面积计算(2)
不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和"容斥原理"(即:集合A与集合B之间有:SA∪B=SA+Sb-SA∩B)合并使用才能解决。
一、例题与方法指导
例1 . 如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。
解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个"弧边三角形"从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.
例2. 如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理 S阴影=S扇形ACB+S扇形ACD-S正方形ABCD
例3 如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
例4. 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。
分析 已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长.
二、巩固训练
1. 如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。
分析 阴影部分的面积,等于底为16、高为6的直角三角形面积与图中(I)的面积之差。而(I)的面积等于边长为6的正方形的面积减去 以6为半径的圆的面积。
2. 如右图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积(取π=3).
解:整个阴影部分被线段CD分为Ⅰ和Ⅱ两部分,以AB为直径的半圆被 弦AD分成两部分,设其中AD右侧的部分面积为S,由于弓形AD是两个半圆的公共部分,去掉AD弓形后,两个半圆的剩余部分面积相等.即Ⅱ=S,由于:
3. 如右图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积.
4. 如下页右上图,ABC是等腰直角三角形,D是半圆周上的中点,BC是半圆的直径,且AB=BC=10,求阴影部分面积(π取3.14)。
解:∵三角形ABC是等腰直角三角形,以AC为对角线再作一个全等的等腰直角三角形ACE,则ABCE为正方形(利用对称性质)。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:
一、 相加法:
这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.
二、 相减法:
这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.
三、 直接求法:
这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2,高为4的三角形,面积可直接求出来。
四、 重新组合法:
这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.
五、 辅助线法:
这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.
六、 割补法:
这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.
七、 平移法:
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如右图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、 旋转法:
这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.
九、 对称添补法:
这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
十、重叠法:
这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用"容斥原理"(SA∪B=SA+SB-SA∩B)解决。例如,欲求右图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.
(九) 逻辑推理
曾经爱因斯坦出过一道测试题, 他说世界上有98%的人回答不出!!让我们一起来看看是什么题呢。
在一条街上有5座颜色不同的房子,住着5个不同国家的人,他们抽着5种不同的烟,喝着5种不同的饮料,养着5种不同的宠物。有下面15个已知条件,求解。
1、英国人住红色房子。
2、瑞典人养狗。
3、丹麦人喝茶。
4、绿色房子在白色房子左面。
5、绿色房子主人喝咖啡。
6、抽Pall Mall香烟的人养鸟。
7、黄色房子主人抽Dunhill香烟。
8、住在中间房子的人喝牛奶。
9、挪威人住第一间房。
10、抽Blends香烟的人住在养猫的人隔壁。
11、养马的人住抽Dunhill香烟的人隔壁。
12、抽Blue Master的人喝啤酒。
13、德国人抽Prince香烟。
14、挪威人住蓝色房子隔壁。
15、抽Blends香烟的人有一个喝水的邻居。
问:哪个国家的人养鱼?
这道题为什么会难倒这么多人呢,首先,我们就来研究一下关于他的最基本的逻辑问题吧。
一、例题与方法指导
例1. 某地质学院的学生对一种矿石进行观察和鉴别:
甲判断:不是铁,也不是铜。
乙判断:不是铁,而是锡。
相关文章
- 小学1-6年级作文素材大全
- 全国小学升初中语数英三科试题汇总
- 小学1-6年级万博体育app
- 小学1-6年级奥数类型例题讲解整理汇总
- 小学1-6年级奥数练习题整理汇总
- 小学1-6年级奥数知识点汇总
- 小学1-6年级语数英教案汇总
- 小学语数英试题资料大全
- 小学1-6年级语数英期末试题整理汇总
- 小学1-6年级语数英期中试题整理汇总
- 小学1-6年语数英单元试题整理汇总




